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Abstract
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1. Introduction

The Generalized Conjugate Gradient Method of Concus and Golub (1] and Widlund (3] is

an iterative method for solving a system of linear equations Az - b when the coefficient matrix

A is real and has positive definite symmetric part M - (A+A')/2:

LET ?T() BE GIVEN AND SET z(- ') - 0.

FOR m - 0 STEP I UNTIL "CONVERGENCE" DO

SOLVE M-) - -Ax*

COMPUTE' - (M m)")
IF m - 0 THEN

SET WM+ 1 =

ELSE

COMPUTE Wm+1 - (I + pm/(Pm Wm)F -1

COMPUTE X(m+1) n X(m- t) + "%"+I (SM) + z(m) - - ) )

Let A - M-N, whence -N - (A-A')/2 is the skew-symmetric part of A, and let

K - M-N. Then it can be shown that the iterate (m) lies in the affine Krylov subspace

X(e) + Span{sO), Kv( ), Ke), ..., K"Ot- ) W z(G)+$ M

and is characterized by the Galerkin condition

(z, Ac(-)) - 0 for all x E S,, (.1

where e(m) a z(m)-. (see 131). Moreover,

Z(M) - z + p (K)e( )  (1.2)

where P.(P) is an even (odd) polynomial of degree at most m for m even (odd) and pm(1 ) = 1

(ee [31).

In this paper, we show that z(m) is the beet approximation to x from a certain

m-dimensional Sine subspace (but not from the asine Krylov subspace ?P)+Sm) and use this

property to improve the error bounds given by Widlund 13] and Hageman, Luk, and Young [2].

1 (1,z) denote the Euclidean inner-product.
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Notation: (y,,4)M denotes the M-inner product (My,z) and fzlB denotes the

corresponding norm. Note that

(Ky,r)M - (Ny,z) - -(V,Nz) - -(Mv,C-Nz) - -(v,Kz)M

so that K is skew-symmetric with respect to (',)M and (Kz,z)A - 0 for ali z.

2. An Alternative Chascterisation

In this section, we show that the iterate T(m) generated by the Generalized Conjugate

Gradient Method is the best approximation to x with respect to a certain m-dimensional affine

subspace, but not with respect to the afflne Krylov subspace x(")+$ (unless x(") - z). The

cases m even (- 2k) and m odd (-= 2k+1) are treated separately.

Theorem 2.1: Pk ) E z(°)+(I+K)S$= and

(z, z(k)_-z)M = 0 for all z E (+K)$6 ,

whence

Ilz(5 )-xJIM - min m J JDs-zJJM j E z(9)+(I+K)Sh}

Proo.:

Since psk(-l) - pk(l) - I (recall that ph is even), Pgj(P) can be written in the form

p,(p) - 1 + (1+0,) _,(')(1-is)

where rt-(p) is a polynomial of degree at most 2k-2. Therefore, by (1.2),

X"  - z + C(9) + (1+K) r,(K) (-K)e)

- z(G - (I+K) lsh2 (K)S

. E zIo}+(I+K)$k
i6

If z E (I+K)S$,2 , then z (I+K)u for some u E ;,S and

(Z, (S*)-Z)A - (MI+K)u, (k)) - (u, Ac( )) -0

by the Galerkin condition (1.1). 0

...... ~~ ~~ .- . -... --

.- ......... ... . . . .". . .. '.-.;
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However, P(h) is not the best approximation to z from P4+ S~k. To see this, note that

(SiO, x(2*)--)M - ((I-K)eS), Ph~))M

-- (C(2k), e(2) )A1 + (C2)C9 e (2k) )M + (Kec$), p,,k(K)c())M

By Theorem 2.1, S'P- C) - W zO E (I+K)S,, and the second term vanishes. Since K is

skew-symmetric 'with respect to (), and p, is even, the third term also vanishes. Therefore,

v()E Ssh but

(S(*) X(Ik)_Z)M - (e(2k) I '(2k)MA 7& 0

unless z z.

Theorem 2.2: z (2+' Ez0v8QKS1+ and

(zz~+Lz -0 for all a; E (I+K)Sk,,

whence

11Z (2k+i)_xIjm - mini{i~i jDz, I V ~)J)(+)k,

P roof:.

Since p~k+1 (1) - I and p3k~(-1) - -p2 k+1(1) - -1 (recall that p~k.1 is odd), P2k+1(P) Can
be written in the form

Plk+1(IPj - A + (l+P) 'r~k.-i1p (1-F)

where ir,,_ 1(p) is an odd polynomial of degree at most 2k-1. Therefore, by (1.2),

z (26+1) . z + Kc(O) + (I+K) x~k- 1(K) (I-K)c~--

- -) (I-K)SW - (1+ K) ;ir,_(KW40

?) + -(J+K) ;r2 J..1 (W)

E z(O)+SO4(I+K)S35~j

If:z E (I+,K)S2,, 1 , then:- (I+K)u for sonme u E S and

('z, z(Sh+l)-z)M - (M1I+K)u, e("+')) -(u, Ae(2k+') - 0 .,*

DTIcI
COPY
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by the Galerkin condition (1.1). 0

Again, Ph + ') is not the best approximation to z from z(S)+$Su. 1 To see this, note that

(V(§), X(2' ')-X)M . - ((I-K)c($), e(2' ')),u

, (c(2k+t) C(2k+))M _ ((Ibt)_KP(). C(b+))M

- WO), p,.,+(K))M

By Theorem 2.2, c(2+')-Ke(O) - (h+1)-()-s ) C (I+K)Su and the second term vanishes.

Since K is skew-symmetric with respect to (-,-)m and Pa+ is odd, the third term also vanishes.

Therefore, v(*) E Stl but

(v ), (2h+l-z)M - (C( k l ; , c(A+l))M , 0

unless(is) -z X.

3. Error Bounds

In this section, we use the best approximatirn property of the iterates {z ( ")} to prove error

bounds for the Generalized Conjugate Gradient Method.

Theorem 3.1:

!__()- xll, 1 <5 Iq,.(KX_ ()- )ll

for any real polynomial qm(p) of degree at most m satisfying q.(1) - 1 and q.(-1) = (-1)".

Proof:

Let Y = z + 9.(K)e(O). Then it can be shown that F E T(O)+(I+K)S. if m is even (see the

first part of the proof of Theorem 2.1) and that v E z(*+)40+(1+K)S. if m is odd (see the first

part of the proof of Theorem 2.2). Therefore, using either Theorem 2.1 or Theorem 2.2,

II2()-zll _< Il-zllr II - Jq,(K) ()-z)ll
0

Let o(K) denote the spectrum of K. Since K is skew-symmetric with respect to (',')M, it

can be shown that

IL'
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Re -0, lir ol 5 IIKIz, A

for any p E o(K), and that

IIq.(K)1M - max Iq.jp)l

for any real polynomial q,(p).

Corollary 3.2:

M A)" + 2-II]-"

where R(A) - A- ' + ViT+.

Proof..

Let q.(#) - Tm(iA-np)/T(iA-) where T.(z) is the Pt Chebyshev polynomial. Since

T,(z) is even (odd) when m is even (odd), qjp) is a real polynomial which satisfies the conditions

of Theorem 3.1 so that

Hz(=- llTM _< Ijq.(KXz(9)--:QIIj: <_ Iq.(K)IIMI Hz($)-=iD..,

But

fkII -IT,(i-'p)I 1Uq=(K)IIAlf- max <pea(M) IT.(iA-')l IT.(iA-')

since -1 < iA-',p< +1 for all/i E o(K) and ITj(z)l _5 1 for -1 z < +1. Moreover, it can

be shown that

T.(iA-') - !. (4A)m + (-R(A)]-'

Therefore, since A) > 1,

Iz(=)-ZllI <5 2 _ SOL-:ll
- =R(A) + l-MA)l-"

Hageman, Luk, and Young 121 proved Corollary 3.2 for m even by observing that the even

iterates can also be generated by applying conjugate gradient acceleration to a certain

7"
* ~ !



symmetrinable "double" method. Widlund [31 proved somewhat weaker bounds for general m

using a standard argument for Galerkin methods.

The best approximation property and the nesting of the subspaces ( S.) guarantees that

(flejc( M~) and { te'2k')IMj) are both monotone decreasing. Widlund [3] gives a direct proof. The
following result shows that both sequences must converge at the same rate, contradicting the

experimental results reported in 131.

Corollary 3.3:

A- lzr)zII. M -I~ :5 jzt)z -- HW A Ijz(' ~--zIIM for all m > 1.

Proof:

It suffices to prove the right-hand inequality. Since q,,(p) -pp,... 1 p) satisfies the
conditions of Theorem 3.1,

llIx("')-zHII :5U.Kz()xI~

-A fl0 ~zl
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